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This contribution has two main objectives. First, it aims to compare empirically input-oriented techni- 

cal and economic capacity notions. Second, it aims to compare these capacity notions on both convex 

and nonconvex technologies. After defining these capacity notions, an empirical comparison is performed 

using a secondary data set containing data of French fruit producers. Anticipating two key empirical con- 

clusions, we find that all these different capacity notions follow different distributions, and also that these 

distributions almost always differ under convex and nonconvex technologies. 
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. Introduction 

Analysing efficiency and productivity using frontier technolo-

ies has become a standard empirical tool serving a variety of

cademic, regulatory and managerial purposes. Indeed there is a

uge academic literature applying these methodologies for ana-

yzing private and public sector performance-related issues. Fo-

using on empirical surveys of certain well-studied sectors, one

an point, for example, to banking ( Harker & Zenios, 2001 ), edu-

ation ( Worthington, 2001 ), health care ( Ozcan, 2008 ), insurance

 Cummins & Weiss, 20 0 0 ), justice system ( Voigt, 2016 ) and real

state ( Anderson, Lewis, & Springer, 20 0 0 ). Apart from this surge

f empirical applications, there has equally been an extended se-

ies of methodological innovations in this literature surveyed in,

or example, Hatami-Marbini, Emrouznejad, and Tavana (2011) or

hanassoulis, Silva Portela, and Despi ́c (2008) . 

An important area of regulatory applications has been the im-

lementation of incentive regulatory mechanisms (e.g., price cap

egulation) using frontier-based performance benchmarks in coun-

ries with liberalized network industries (e.g., electricity, gas, water

tilities). One survey focusing on its use in the electricity sector is
� We thank three reviewers of this journal for their most constructive comments. 

he usual disclaimer applies. J. Sadeghi thanks IÉSEG School of Management for its 

ospitality during his research stay. 
∗ Corresponding author. 

E-mail addresses: k.kerstens@ieseg.fr (K. Kerstens), std_j.sadeghi@khu.ac.ir (J. 

adeghi), ignace.vandewoestyne@kuleuven.be (I. Van de Woestyne). 
1 visitor, CNRS-LEM (UMR 9221), IESEG School of Management, 3 rue de la Digue, 

-590 0 0 Lille, France. 

m  

r  

T  

r  

p  

(

 

t  

ttps://doi.org/10.1016/j.ejor.2019.01.014 

377-2217/© 2019 Elsevier B.V. All rights reserved. 
amasb and Pollitt (20 0 0) . An example of a managerial application

s the use of frontier methods to save money by allowing use of

nternal funds to pursue a growth strategy in a US bank (see, e.g.,

herman & Ladino, 1995 ). 

However, this frontier literature has largely ignored integrating

he important notion of capacity utilization. Consequently, part of

hat appears like inefficiency may in fact be due to the short-run

xity of certain inputs, depending on the exact definition of capac-

ty utilization. It is of equal importance to account for heterogene-

ty in capacity utilization when measuring productivity growth

e.g., Luh & Stefanou, 1991 ). 

Capacity utilization of fixed inputs is relevant for both man-

gers and policy makers at various levels of aggregation and in

ll economic sectors. For instance, at the country level capacity

tilization is traditionally employed as a leading macro-economic

ndicator to forecast inflation (e.g., Christiano, 1981 ). The manage-

ent of excess vessel capacities has recently become a key pol-

cy issue in fisheries due to degrading bio-stocks in this common

ool resource. As an example, a variety of capacity measures has

een employed to evaluate vessel decommissioning schemes (e.g.,

alden, Kirkley, & Kitts, 2003 ). To curb overfishing, governments

ust determine sustainable capacity levels by implementing a va-

iety of policy measures (e.g., licenses, fishing day restrictions, etc.).

o define these policy measures, scientists have developed short-

un industry models based on vessel capacity estimates to allow

lanning the industry and infer realistic decommissioning schemes

see, e.g., Lindebo, 2005 ). 

However, different notions of capacity co-exist in the litera-

ure (e.g., Christiano, 1981 or Johansen, 1968 ). It is common to
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distinguish between technical or engineering concepts on the one

hand and economic capacity concepts on the other hand. Johansen

(1968) developed a technical or engineering approach by introduc-

ing a plant capacity notion. Plant capacity is defined as the max-

imal amount that can be produced per unit of time with existing

plants and equipment without restrictions on the available vari-

able inputs. This definition has been transposed into a production

frontier context using output-oriented efficiency measures by Färe,

Grosskopf, and Kokkelenberg (1989a) . 

Most economic capacity concepts are based on the cost func-

tion. In the literature there are basically at least three ways of

defining a cost-based capacity notion (see, e.g., Nelson, 1989 ). Each

of these notions attempts to isolate the short-run inadequate or

excessive utilization of fixed inputs. A first notion of potential out-

puts is defined in terms of the outputs produced at short-run

minimum average total cost given existing plant and input prices

(for instance, Hickman, 1964 ). It stresses the need to exploit scale

economies in the short-run. A second definition of potential out-

puts is conceived in terms of the outputs produced at minimum

average total cost in the long-run (e.g., Cassels, 1937 , among oth-

ers). It is rarely used because its intertwining with the notion of

scale economies. A third definition corresponds to the outputs at

which the short-run and long-run average total cost curves are tan-

gent. Since this tangency point is at the intersection of short-run

and long-run expansion paths, this notion has considerable the-

oretical appeal (for example, Klein, 1960 or Segerson & Squires,

1990 ). 

We are unaware of any study comparing this wide range of

technical and economic capacity notions. 2 One plausible hypoth-

esis explaining this lack of comparative studies is that the eco-

nomic capacity notions at least implicitly adopt an input orien-

tation, while the technical plant capacity notion is traditionally

based on output-oriented efficiency measures. However, recently

Cesaroni, Kerstens, and Van de Woestyne (2017) develop an input-

oriented plant capacity notion based on input-oriented efficiency

measures. Furthermore, Cesaroni, Kerstens, and Van de Woestyne

(2019) recently defined new long-run output- and input-oriented

plant capacity concepts. Therefore, a first major goal of this contri-

bution is to make a theoretically coherent input-oriented compar-

ison between this wide variety of technical and economic capac-

ity notions. As a point of comparison, we also include the output-

oriented plant capacity notion which has been used quite often

in the literature in the last three decades since its inception (see

Cesaroni et al., 2017 for a literature review). 

This research assumes that different capacity concepts should

ideally measure somehow a similar part of reality. Therefore, we

require that these different capacity concepts satisfy some min-

imal consistency conditions in terms of both the comparabil-

ity of distributions and the similarities in rankings. 3 Anticipat-

ing our empirical results, formal testing reveals that in almost

all cases technical and economic capacity notions follow different

distributions. These differences are confirmed in terms of rank-

ings between input-oriented plant capacity and cost-based capac-

ity notions under non-convexity, though less pronounced so under

convexity. 

It is well-known that the axiom of convexity has a potential

impact on the empirical analysis based on technologies (see, e.g.,
2 Sahoo and Tone (2009) come closest to comparing some technical and eco- 

nomic capacity notions in terms of inputs and costs using input-oriented nonpara- 

metric frontier models. 
3 This is inspired by the first two consistency conditions in the work of Bauer, 

Berger, Ferrier, and Humphrey (1998) regarding the evaluation of efficiency mea- 

sures resulting from different frontier estimation methodologies. We are not con- 

vinced that the additional four consistency conditions make much sense in the 

framework of measuring and evaluating different capacity utilisation concepts. 

(T.  

(T.

(T.  

(T.

(T.
one & Sahoo, 2003 ). In our context, for instance, Walden and

omberlin (2010) document the effect of maintaining or dropping

onvexity on the output-oriented plant capacity utilization con-

ept. Equally so, Cesaroni et al. (2017) reveal the impact of con-

exity on both the output- and input-oriented plant capacity uti-

ization notions. 

However, most researchers tend to ignore the potentially im-

ortant impact of convexity on the cost function. This is related

o a property of the cost function in the outputs that is ignored

y most people. Indeed, some seminal contributions to axiomatic

roduction theory indicate that the cost function is nondecreasing

nd convex in the outputs if and only if the technology is convex

e.g., Jacobsen, 1970 ). Otherwise, the cost function is nonconvex

n the outputs. Briec, Kerstens, and Vanden Eeckaut (2004) refine

his general property and prove that cost functions estimated on

onconvex technologies yield larger or equal cost estimates com-

ared to cost functions estimated on convex technologies. Both

hese types of cost functions are identical when there is a single

utput and when constant returns to scale prevail. The large ma-

ority of empirical studies have failed to put these properties to a

est. In our context, to the best of our knowledge the impact of

onvexity on cost-based notions of capacity utilisation has never

een evaluated. Therefore, a second major goal of this contribution

s to make a coherent input-oriented comparison between techni-

al and economic capacity notions using both convex and noncon-

ex technologies to assess the impact of the convexity hypothesis.

gain anticipating the empirical results, our formal tests show that

lmost all capacity concepts seem to follow a different distribu-

ion under convexity and nonconvexity, though convexity seems to

atter less in terms of rankings. 

This contribution is structured as follows. Section 2 summarizes

he basic definitions of the technology and the cost function. The

ext Section 3 reviews in detail both the economic and technical

apacity utilization definitions. This includes, among others, look-

ng at the issue of normalization, given the existence of inefficien-

ies, and a priori determining the eventual impact of convexity. In

he next Section 4 we develop an empirical illustration making use

f an existing secondary data set, which makes our results replica-

le. The focus is on descriptive statistics, a formal testing of the

esulting distributions, and a comparison of Spearman rank corre-

ations. A final section concludes. 

. Technology and cost functions: basic definitions 

In this section we define technology and some basic notation.

iven N -dimensional input vectors x ∈ R 

N + and M -dimensional out-

ut vectors y ∈ R 

M + , the production possibility set or technology T

an be defined as T = { (x, y ) | x can produce at least y } . The input

et L (y ) = { x | (x, y ) ∈ T } associated with T holds all input vectors

 capable of producing at least a given output vector y . In a similar

ay, the output set P (x ) = { y | (x, y ) ∈ T } associated with T holds

ll output vectors y that can be produced from at most a given

nput vector x . 

Throughout this contribution, technology T satisfies some com-

ination of the following standard assumptions: 

1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if

(0, y ) ∈ T , then y = 0 . 

2) T is a closed subset of R 

N + × R 

M + . 
3) Strong input and output disposal, i.e., if ( x , y ) ∈ T and (x ′ , y ′ ) ∈

R 

N + × R 

M + , then (x ′ , −y ′ ) ≥ (x, −y ) ⇒ (x ′ , y ′ ) ∈ T . 

4) ( x , y ) ∈ T ⇒ δ( x , y ) ∈ T for δ ∈ �, where: 

(i) � ≡ �CRS = { δ | δ ≥ 0 } ; 
(ii) � ≡ �VRS = { δ | δ = 1 } . 
5) T is convex. 
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5 In order to see this projection operationalized, start from model (2) in Appendix 
riefly discussing these traditional axioms on technology, it is use-

ul to recall: (i) inaction is feasible, and there is no free lunch, (ii)

losedness, (iii) free disposal of inputs and outputs, (iv) returns to

cale assumptions (i.e., constant returns to scale (CRS) and variable

eturns to scale (VRS)), and (v) convexity of technology (see, e.g.,

ackman, 2008 for details). Not all these axioms are maintained in

he empirical analysis. 4 In particular, key assumptions distinguish-

ng some of the technologies in the empirical analysis are CRS ver-

us VRS, and convexity versus nonconvexity. 

The input distance function completely characterizes the input

et L ( y ) and it can be defined as follows: 

 i (x, y | T ) = max { λ | λ ≥ 0 , (x/λ, y ) ∈ T } 
= max { λ | λ ≥ 0 , x/λ ∈ L (y ) } . (1) 

he main properties of this input distance function are:

i) D i ( x , y | T ) ≥ 1, with efficient production on the boundary (iso-

uant) of L ( y ) represented by unity; (ii) it has a cost interpretation

see, e.g., Hackman, 2008 ). 

The inverse of this input distance function DF i (x, y | T ) =
 D i (x, y | T )] −1 is known as the radial input efficiency measure.

ence, the radial input efficiency measure is defined as: 

F i (x, y | T ) = min { λ | λ ≥ 0 , λx ∈ L (y ) } . (2)

ts key property is that it is situated between zero and unity

0 < DF i ( x , y ) ≤ 1), with efficient production on the boundary (iso-

uant) of the input set L ( y ) represented by unity. 

Switching to a dual representation of technology, the cost func-

ion can be defined as the minimum expenditures needed to pro-

uce a given output vector y for a given vector of semi-positive

nput prices ( w ∈ R 

N + ): 

(y, w | T ) = min 

x 
{ wx | (x, y ) ∈ T } = min 

x 
{ wx : x ∈ L (y ) } . (3)

Duality relations link these primal and dual representations of

echnology. Duality allows a well-behaved technology to be recon-

tructed from the observations on cost minimizing producer be-

avior, and the reverse. The duality between input distance func-

ion (1) and cost function (3) is: 

 i (x, y | T ) = min 

w 

{ wx | C(y, w | T ) ≥ 1 } , x ∈ L (y ) , (4) 

(y, w | T ) = min 

x 
{ wx | D i (x, y | T ) ≥ 1 } , w > 0 . (5) 

t is common to establish such duality relations under the hypoth-

sis of a convex technology or a convex input set (e.g., Hackman,

008 , Ch. 7). Briec et al. (2004) are the first to establish a local

uality result between nonconvex technologies subject to various

caling laws and their corresponding nonconvex cost functions. 

Next, the radial output efficiency measure can be defined as: 

F o (x, y | T ) = max { θ | θ ≥ 0 , θy ∈ P (x ) } , (6)

nd offers a complete characterization of the output set P ( x ).

ts main properties are that it is larger than or equal to unity

 DF o ( x , y | T ) ≥ 1), with efficient production on the boundary (iso-

uant) of the output set P ( x ) represented by unity, and that the

adial output efficiency measure has a revenue interpretation (e.g.,

ackman, 2008 ). 

Partitioning the input vector into a fixed and variable part, we

ave x = (x f , x v ) with x f ∈ R 

N f 
+ and x v ∈ R 

N v + such that N = N f + N v .

urthermore, we can make the same distinction regarding the in-

ut price vector w = (w 

f , w 

v ) . 

In a similar way to Färe, Grosskopf, and Valdmanis

1989b) , a short-run technology T f = { (x f , y ) ∈ R 

N f 
+ × R 

M + |
4 Note that the convex VRS technology does not satisfy inaction. 

B

w

r

(x f , x v ) can produce at least y } and the corresponding in-

ut set L f (y ) = { x f ∈ R 

N f 
+ | (x f , y ) ∈ T f } and output set

 

f (x f ) = { y | (x f , y ) ∈ T f } can be defined. Note that technol-

gy T f does not include variable inputs, and the maximal output

rom this technology is determined solely by the fixed inputs. This

ields an equivalent output level as a technology where all the

ariable inputs are set to zero. Thus, technology T f is obtained by a

rojection of technology T ⊂ R 

N + × R 

M + into the subspace R 

N f 
+ × R 

M + :
.e., by setting all variable inputs equal to zero. This projection

aps (x f , x v , y ) onto ( x f , 0, y ) which is mathematically identified

ith ( x f , y ). 5 The same applies by analogy to the input set L f ( y )

nd the output set P f ( x f ). 

By analogy, the short-run total cost function is defined as fol-

ows: 

(w, x f , y | T ) = min 

x v 
{ w 

v x v + w 

f x f | (x f , x v , y ) ∈ T } . (7)

The short-run variable cost function is defined as: 

 C(w 

v , x f , y | T ) = min 

x v 
{ w 

v x v | (x f , x v , y ) ∈ T } . (8)

ote that the short-run total cost function is simply the sum of the

hort-run variable cost function and the observed fixed costs. 

The sub-vector input efficiency measure reducing only the vari-

ble inputs is defined as follows: 

F SR 
i (x f , x v , y | T ) = min { λ | λ ≥ 0 , (x f , λx v ) ∈ L (y ) } . (9)

Next, we need the particular input set L (0) = { x | (x, 0) ∈ T } for

hich the output level is set to at least zero. The input efficiency

easure reducing all inputs relative to this input set with zero out-

ut level is given by: 

F i (x, 0 | T ) = min { λ | λ ≥ 0 , λx ∈ L (0) } . (10)

hen, the sub-vector input efficiency measure reducing variable in-

uts evaluated relative to this input set with zero output level is

iven by: 

F SR 
i (x f , x v , 0 | T ) = min { λ | λ ≥ 0 , (x f , λx v ) ∈ L (0) } . (11)

By analogy, denote the radial output efficiency measure of the

utput set P f ( x f ) by DF 
f 

o (x f , y ) . This efficiency measure can be de-

ned as 

F f 
o (x f , y | T ) = max { θ | θ ≥ 0 , θy ∈ P f (x f ) } . (12)

ext, we introduce the particular output set P = { y | ∃ x : (x, y ) ∈ T }
ontaining all possible outputs regardless of the required inputs.

his set allows us to define a new efficiency measure DF o ( y | T ) that

oes not depend on a particular input vector x : 

F o (y | T ) = max { θ | θ ≥ 0 , θy ∈ P } . (13)

ontrary to the radial output efficiency measure (6) , this new ef-

ciency measure DF o ( y | T ) is allowed to choose the inputs needed

or maximizing θ . 

Now, for K observations (x k , y k ) ∈ R 

N + × R 

M + , (k = 1 , . . . , K) a uni-

ed algebraic representation of convex and nonconvex nonpara-

etric frontier technologies under CRS and VRS assumptions is

ossible as follows: 

 

�, � = 

{ 

(x, y ) | x ≥
K ∑ 

k =1 

x k δz k , y ≤
K ∑ 

k =1 

y k δz k , z ∈ �, δ ∈ �

} 

, (14) 

here 

i) � ≡ �CRS = { δ | δ ≥ 0 } ; 
 and set x v 
k 

= 0 for all k . Consequently, the variable input constraints become 0 ≤ 0 

hich is always satisfied and so can be removed without altering the outcome. The 

esulting model is model (3) of Appendix B. 
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2  
ii) � ≡ �VRS = { δ | δ = 1 } ; 
and 

(i) � ≡ �C = 

{ 

z | 
K ∑ 

k =1 

z k = 1 and ∀ k ∈ { 1 , . . . , K} : z k ≥ 0 

} 

; 

ii) � ≡ �NC = 

{ 

z | 
K ∑ 

k =1 

z k = 1 and ∀ k ∈ { 1 , . . . , K} : z k ∈ { 0 , 1 } 
} 

. 

Observe there is one activity vector z operating subject to a non-

convexity or convexity constraint as well as a scaling parameter δ
allowing for some particular scaling of all K observations determin-

ing the technology. The activity vector z having real valued compo-

nents summing to unity represents the convexity axiom. This activ-

ity vector with binary valued components summing to unity cor-

responds with nonconvexity. The scaling parameter δ is free under

CRS and fixed at the unit level under VRS. 

To compute the input efficiency measure (2) or cost function

(3) relative to convex technologies in (14) requires solving non-

linear programming (NLP) problems for each evaluated observa-

tion. These NLPs can be easily transposed into the familiar linear

programming (LP) problems found in the literature (see Hackman,

2008 ). 6 For the nonconvex technologies, nonlinear binary mixed

integer programs must be solved, but alternative solution strate-

gies are available (see Kerstens & Van de Woestyne, 2014 ). 

From here on, the above notions of efficiency measures and cost

functions are conditioned relative to nonparametric VRS or CRS

technologies satisfying either convexity (denoted C ) or nonconvex-

ity (denoted NC ). 

3. Economic and technical capacity utilization: literature 

review and definitions 

A variety of capacity notions coexist in the economic litera-

ture. It is customary to distinguish between technical (engineer-

ing) and economic (mainly cost-based) capacity concepts (see, e.g.,

Johansen, 1968; Nelson, 1989 ). We first address the economic con-

cepts using a cost function approach, and then turn to the techni-

cal or engineering notion. 

3.1. Economic capacity concepts 

At least three ways of defining a cost-based notion of capacity

have been proposed in the literature (see Nelson, 1989 ). Each of

these notions aims to isolate the short-run excessive or inadequate

utilization of existing fixed inputs (e.g., capital stock). A first no-

tion is defined in terms of the output produced at short-run min-

imum average total cost given existing input prices (see Hickman,

1964 , among others). A second definition focuses on the outputs

for which short-run and long-run average total costs curves are

tangent (e.g., Segerson & Squires, 1990 ). This tangency point no-

tion is known under two variations depending on what are sup-

posed to be the decision variables. One notion assumes that out-

puts are constant and determines optimal variable and fixed in-

puts. Another notion assumes that fixed inputs cannot adjust, but

outputs, output prices and fixed input prices do adjust. A third and

final definition of economic capacity considers the output deter-

mined by the minimum of the long-run average total costs (e.g.,

Cassels, 1937; Klein, 1960 ). 

To apply these notions of economic capacity utilization us-

ing nonparametric frontier technologies, one can characterize the
6 By substituting t k = δz k in (14) , one can rewrite the sum constraint on the ac- 

tivity vector z . Note that the constraints on the scaling factor are integrated into the 

latter sum constraint and the LP appears. 

o  

t

D  

C

bove three economic capacity notions, one of which has two vari-

nts, in a multiple output context in the following series of def-

nitions (see, e.g, De Borger, Kerstens, Prior, & Van de Woestyne,

012 ). 

efinition 3.1. The minimum of the short-run total cost function

(y, w 

v , x f | V RS) is C(y, w 

v , x f | CRS) . 

The minimum of the single output short-run average total cost

unction can be determined indirectly in the multiple output case

y solving for a variable cost function relative to a CRS technol-

gy (V C(y, w 

v , x f | CRS)) , and simply adding observed fixed costs

 C = w 

f x f . The resulting short-run total cost function C(y, w 

v , x f |
RS) = (V C(y, w 

v , x f | CRS) + F C) offers the reference point for this

apacity notion. In the convex case, computing a cost function boils

own to a well-known linear program. But, in the nonconvex case

ne must solve a mixed binary integer linear program. 

efinition 3.2. Let x f ∗ represent optimal fixed inputs, p ∈ R 

N + a vec-

or of input prices, and y (p, w 

f , x f ) the outputs that have been ad-

usted in terms of given output prices, fixed input prices and the

iven fixed inputs. Then, 

(i) tangency cost with modified fixed inputs C tang1 (y, w, x f∗ | V RS)

is 

C(y, w | V RS) = C(y, w 

v , x f∗ | V RS) ;
ii) tangency cost with modified outputs C tang2 (y (p, w 

f , x f ) , w, x f |
V RS) is 

C(y (p, w 

f , x f ) , w | V RS) = C(y (p, w 

f , x f ) , w 

v , x f | V RS) . 

First, the tangency point between short- and long-run costs

an also be estimated using nonparametric cost frontiers. Two tan-

ency points can be derived depending on the choice of decision

ariables. 

One tangency cost notion assumes that outputs remain con-

tant and then determines optimal variable and fixed inputs

 

tang1 (y, w, x f∗ | V RS) . This can be solved indirectly by minimiz-

ng a long-run total cost function C(y, w | V RS) yielding optimal

xed inputs ( x f ∗). By definition, the short-run and total cost func-

ion with fixed inputs equal to these ex post optimal fixed in-

uts F C(y, w 

v , x f∗ | V RS) yields exactly the same solution in terms

f optimal costs and optimal variable inputs C(y, w 

v , x f∗ | V RS) =
 C(y, w 

v , x f∗ | V RS) + F C(y, w 

v , x f∗ | V RS) . Hence, the optimal solu-

ion for C(y, w | V RS) generates the tangency point we are looking

or. In the convex case, computing this cost function requires solv-

ng again a linear program. In the nonconvex case, one needs to

olve a mixed binary integer linear programming problem. 

Another tangency point, favored by Nelson (1989 , p. 277) and

nalyzed in detail in Briec, Kerstens, Prior, and Van de Woestyne

2010) , assumes that fixed inputs cannot be adjusted in the short-

un, but that outputs, output prices (p ∈ R 

M + ) and fixed input prices

re adjustable such that installed capacity is utilized ex post at a

angency cost level (C tang2 (y (p, w 

f , x f ) , w, x f | V RS)) . Though one

ay object that outputs are assumed to be exogenous in a compet-

tive cost minimization model, this tangency notion offers a useful

eference point, since it retrospectively indicates the output quan-

ities and prices as well as the fixed input prices at which existing

xed inputs would have been optimally utilized. For an arbitrary

bservation, this tangency cost level may imply an output level

(y (p, w 

f , x f )) below or above current outputs. In the convex case,

ptimal costs at this tangency point are determined by solving for

ach observation a nonlinear system of inequalities ( Briec et al.,

010 ). In the nonconvex case, however, one must solve for each

bservation a mixed binary integer nonlinear system of inequali-

ies. 

efinition 3.3. The minimum of the long-run total cost function

(y, w | V RS) is obtained as C(y, w | CRS) . 
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7 An equivalent formulation for DF SR 
i 

(x f , x v , 0 | V RS) is DF SR 
i 

(x f , x v , y min | V RS) , 

where y min = min 
k =1 , ... ,K 

y k whereby the minimum is taken in a component-wise man- 

ner for every output over all observations: see Proposition B.1 in Appendix B. 
8 An equivalent formulation for DF i ( x , 0 | VRS ) is DF i ( x , y min | VRS ), where y min = 

min 
k =1 , ... ,K 

y k whereby the minimum is taken in a component-wise manner for every 

output over all observations: see Proposition B.2 in Appendix B. 
The minimum of long-run average total costs can be deter-

ined indirectly by solving for a long-run total cost function de-

ned relative to a CRS technology C(y, w | CRS) . In the convex case,

omputing this cost function again involves solving a linear pro-

ram. For the nonconvex case, one must solve a mixed binary in-

eger linear programming problem. For convenience, the way of

omputing all economic capacity concepts in the convex as well

s nonconvex case are spelled out in the Appendix B. 

In a frontier context, some of the above cost-based capacity

oncepts or some combination there-off have been reported in

iménez and Prior (20 07) , Prior-Jiménez (20 03) , or Sahoo and Tone

2009) , among others. Note that we have ignored the discussion of

lternative capacity concepts based on the revenue function (e.g.,

indebo, Hoff, & Vestergaard, 2007 ) or the profit function (e.g.,

oelli, Grifell-Tatjé, & Perelman, 2002 ). 

.2. Plant capacity concepts 

Johansen (1968) proposed a plant capacity notion that has been

ade operational by Färe et al. (1989a) and Färe et al. (1989b) us-

ng a pair of output-oriented efficiency measures. The plant capac-

ty notion is defined by Johansen as “the maximum amount that

an be produced per unit of time with existing plant and equip-

ent, provided that the availability of variable factors of produc-

ion is not restricted.” Cesaroni et al. (2017) develop a plant capac-

ty notion using a pair of input-oriented efficiency measures. All of

hese proposals use VRS technologies. We now recall these defini-

ions of the output- and input-oriented plant capacity utilization. 

efinition 3.4. The short-run output-oriented plant capacity uti-

ization ( P CU 

SR 
o ) is defined as: 

 CU 

SR 
o (x, x f , y | V RS) = 

DF o (x, y | V RS) 

DF f 
o (x f , y | V RS) 

, (15)

here DF o ( x , y | VRS ) and DF 
f 

o (x f , y | V RS) are output efficiency

easures relative to VRS technologies including respectively

xcluding the variable inputs as defined before. Notice that

 < P CU 

SR 
o (x, x f , y | V RS) ≤ 1 , since 1 ≤ DF o (x, y | V RS) ≤ DF 

f 
o (x f , y |

 RS) . Thus, output-oriented plant capacity utilization has an up-

er limit of unity, but no lower limit. This output-oriented plant

apacity utilisation compares the maximum amount of outputs

ith given inputs to the maximum amount of outputs in the sam-

le with potentially unlimited amounts of variable inputs: hence

t is smaller than unity. It answers the question how the cur-

ent amount of efficient outputs relates to the maximal possible

mounts of efficient outputs given unlimited amounts of variable

nputs. Following the terminology introduced by Färe et al. (1989a) ,

äre et al. (1989b) and Färe, Grosskopf, and Lovell (1994) one

an distinguish between a so-called biased plant capacity measure

F 
f 

o (x f , y | V RS) and an unbiased plant capacity utilization mea-

ure P CU 

SR 
o (x, x f , y | V RS) , where the ratio of efficiency measures

nsures to eliminate any existing inefficiency. 

Cesaroni et al. (2017) define a new input-oriented plant capac-

ty measure as follows: 

efinition 3.5. The short-run input-oriented plant capacity utiliza-

ion ( P CU 

SR 
i 

) is defined as: 

 CU 

SR 
i (x, x f , y | V RS) = 

DF SR 
i 

(x f , x v , y | V RS) 

DF SR 
i 

(x f , x v , 0 | V RS) 
, (16)

here DF SR 
i 

(x f , x v , y | V RS) and DF SR 
i 

(x f , x v , 0 | V RS) are both

ub-vector input efficiency measures reducing only the vari-

ble inputs relative to the technology, whereby the latter ef-
ciency measure is evaluated at a zero output level. 7 No-

ice that P CU 

SR 
i 

(x, x f , y | V RS) ≥ 1 , since 0 < DF SR 
i 

(x f , x v , 0 | V RS) ≤
F SR 

i 
(x f , x v , y | V RS) . Thus, input-oriented plant capacity utiliza-

ion has a lower limit of unity, but no upper limit. This input-

riented plant capacity utilisation compares the minimum amount

f variable inputs for given amounts of outputs with the mini-

um amount of variable inputs with output levels where pro-

uction is initiated: hence it is larger than unity. It answers the

uestion how the amount of variable inputs compatible with the

nitialisation of production must be scaled up to produce the

urrent amount of outputs. Similar to the previous case, one

an distinguish between a so-called biased plant capacity mea-

ure DF SR 
i 

(x f , x v , 0 | V RS) and an unbiased plant capacity utilization

easure P CU 

SR 
i 

(x, x f , y | V RS) , the latter being cleaned of any pre-

ailing inefficiency. 

Cesaroni et al. (2019) define new long-run output- and input-

riented plant capacity concepts. 

efinition 3.6. The long-run output-oriented plant capacity uti-

ization ( P CU 

LR 
o ) is defined as: 

 CU 

LR 
o (x, y | V RS) = 

DF o (x, y | V RS) 

DF o (y | V RS) 
, (17)

here DF o ( x , y | VRS ) and DF o ( y | VRS ) are output efficiency measures

elative to technologies including all inputs respectively ignor-

ng all inputs. Notice that 0 < P CU 

LR 
o (x, y | V RS) ≤ 1 , since 1 ≤ DF o 

 x , y | VRS ) ≤ DF o ( y | VRS ). Thus, long-run output-oriented plant ca-

acity utilisation has an upper limit of unity, but no lower limit.

his long-run output-oriented plant capacity utilisation compares

he maximum amount of outputs with given inputs to the max-

mum amount of outputs in the sample with potentially unlim-

ted amounts of both fixed and variable inputs: hence it is smaller

han unity. It answers the question how the current amount of

fficient outputs relates to the maximal possible amounts of effi-

ient outputs given unlimited amounts of inputs. Again, it is possi-

le to distinguish between a so-called biased plant capacity mea-

ure DF o ( y | VRS ) and an unbiased plant capacity utilization measure

 CU 

LR 
o (x, y | V RS) that is free of any inefficiency. 

efinition 3.7. The long-run input-oriented plant capacity utiliza-

ion ( P CU 

SR 
i 

) is defined as: 

 CU 

LR 
i (x, y | V RS) = 

DF i (x, y | V RS) 

DF i (x, 0 | V RS) 
, (18)

here DF i ( x , y | VRS ) and DF i ( x , 0 | VRS ) are both input efficiency

easures aimed at reducing all input dimensions relative to the

echnology, whereby the latter efficiency measure is evaluated

t a zero output level. Notice that P CU 

LR 
i 

(x, y | V RS) ≥ 1 , since

 < DF i ( x , 0 | VRS ) ≤ DF i ( x , 0 | VRS ) ≤ 1. 8 Thus, long-run input-oriented

lant capacity utilisation has a lower limit of unity, but no upper

imit. This long-run input-oriented plant capacity utilisation com-

ares the minimum amount of all inputs for given amounts of out-

uts with the minimum amount of all inputs with outputs where

roduction is initiated: hence it is larger than unity. It answers the

uestion how the amount of all inputs compatible with the ini-

ialisation of production must be scaled up to produce the current

mount of outputs. Once more, one can distinguish between a so-

alled biased plant capacity measure DF i ( x , 0 | VRS ) and an unbiased
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plant capacity utilization measure P CU 

LR 
i 

(x, y | V RS) that is unaf-

fected by any inefficiency. Given the recent date of the introduc-

tion of both the short-run input-oriented plant capacity measure

on the one hand, and the long-run plant capacity notions on the

other hand, we provide some more background information in the

Appendix A. 

We note that the majority of capacity concepts presumes the

existence of fixed inputs distinct from variable inputs. But, both the

economic capacity concept of the minimum of the long-run total

cost function (i.e., Definition 3.3 ) and the long-run plant capacity

concepts (i.e., Definitions 3.6 and 3.7 ) dissent from this view and

assume that all inputs are subject to change. 

While these definitions in itself are sufficiently clear, it may

be useful to underscore that both these short-run concepts dif-

fer with respect to the property of attainability. As stressed by

Johansen (1968 , p. 362), the extra variable inputs necessary to

reach the maximal plant capacity output may not be available at

the firm level (or the change in variable inputs is not necessar-

ily costless), rendering the short-run output-oriented plant capac-

ity notion unattainable. Furthermore, even if these extra variable

inputs are available at the firm level, restrictions on the avail-

able extra variable inputs at the sector level may prevent all firms

from simultaneously reaching their maximal capacity output (or

the change in variable inputs may imply substantial costs). By con-

trast, the short-run input-oriented plant capacity notion is always

attainable in that one can always reduce the amount of existing

variable inputs such that one reaches an input set with zero output

level. Doing so is possible at the firm level as well as at the sec-

toral level. The same reasoning applies to the corresponding long-

run plant capacity concepts. The reader is referred to the work of

Kerstens, Sadeghi, and Van de Woestyne (2019) for further discus-

sion on the issue of attainability. 

In the convex case, computing these plant capacity measures

involve solving a linear program for each observation. For the non-

convex case, one must solve a mixed binary integer linear pro-

gramming problem. For convenience, the way of computing all

plant capacity concepts in the convex as well as nonconvex case

are spelled out in the Appendix B. 

3.3. Economic capacity concepts: normalization and impact of 

convexity 

Since the literature has abundantly shown that inefficiencies are

part and parcel of economic life, following the plant capacity con-

cepts it may be useful to normalize the economic capacity con-

cepts as well. We are inspired by the notion of overall efficiency

(see Färe et al., 1994 or Hackman, 2008 ), whereby in the case of

the cost function one divides the minimal cost by the observed

costs ( wx ). Starting from the Definitions 3.1, 3.2 and 3.3 , we can

now define the normalized economic capacity utilization concepts

as follows: 

Definition 3.8. 

(i) The normalized minimum of the short-run total cost function

C N (y, w 

v , x f | V RS) is C(y, w 

v , x f | CRS) /wx . 

ii) The normalized tangency cost with modified fixed inputs

C 
tang1 
N 

(y, w, x f∗ | V RS) is C(y, w | V ) /wx = C(y, w 

v , x f∗ | V RS) /wx . 

ii) The normalized tangency cost with modified outputs

C 
tang2 
N 

(y (p, w 

f , x f ) , w, x f | V RS) is C(y (p, w 

f , x f ) , w | V RS) /wx =
C(y (p, w 

f , x f ) , w 

v , x f | V RS) /wx . 

v) The normalized minimum of long-run total cost function is de-

fined as C N (y, w | V RS) is C(y, w | CRS) /wx . 

Notice that all of these normalized economic capac-

ity utilization concepts are bounded above at unity, except

for the normalized tangency cost with modified outputs
 

tang2 
N 

(y (p, w 

f , x f ) , w, x f | V RS) which can be smaller or larger than

nity. To understand this phenomenon we must first realize that

or observed outputs, we have: C(y, w | V RS) � = C(y, w 

v , x f | V RS) .

s a consequence, in Definition 3.2 the optimal tangency cost may

e smaller or larger to each of the sides of this inequality. To

e explicit, on the one hand we obtain C(y (p, w 

f , x f ) , w | V RS) =
(y (p, w 

f , x f ) , w 

v , x f | V RS) 
> = 

< 
C(y, w | V RS) , and on the other

and we get: C(y (p, w 

f , x f ) , w | V RS) = C(y (p, w 

f , x f ) , w 

v , x f |
 RS) 

> = 

< 
C(y, w 

v , x f | V RS) . 

Finally, when comparing convex and nonconvex results, there

re cases where plant and economic capacity concepts can be or-

ered a priori. First, we state these results for the biased plant ca-

acity concepts as well as the non-normalized economic capacity

oncepts. 

roposition 3.1. 

(i) For the output-oriented plant capacity, we have: DF 
f 

o (x f , y |
V RS, C) ≥ DF 

f 
o (x f , y | V RS, NC) . 

ii) For the input-oriented plant capacity, we have: DF SR 
i 

(x f , x v , 0 |
V RS, C) ≤ DF SR 

i 
(x f , x v , 0 | V RS, NC) . 

ii) For the output-oriented plant capacity, we have: DF o ( y | VRS , C ) ≥
DF o ( y | VRS , NC ) . 

v) For the input-oriented plant capacity, we have: DF i ( x , 0 | VRS , C ) ≤
DF i ( x , 0 | VRS , NC ) . 

v) For the minimum of the short-run total cost function, we have:

C(y, w 

v , x f | V RS, C) ≤ C(y, w 

v , x f | V RS, NC) . 

i) For the tangency cost with modified fixed inputs, we have:

C tang1 (y, w, x f∗ | V RS, C ) ≤ C tang1 (y, w, x f∗ | V RS, NC) . 

ii) For the tangency cost with modified outputs, we have:

C tang2 (y (p, w 

f , x f ) , w, x f | V RS, C) 
> = 

< 
C tang2 (y (p, w 

f , x f ) , w, x f | 
V RS, NC) . 

ii) For the minimum of long-run total cost function, we have: C(y, w |
V RS, C) ≤ C(y, w | V RS, NC) . 

The proof of this Proposition 3.1 is in Appendix C. Thereafter,

e do the same for unbiased plant capacity utilization concepts

nd the normalized economic capacity utilization concepts. 

roposition 3.2. 

(i) For the short-run output-oriented plant capacity utilization, we

have: P CU 

SR 
o (x, x f , y | V RS, C) 

> = 

< 
P CU 

SR 
o (x, x f , y | V RS, NC) . 

ii) For the short-run input-oriented plant capacity utilization, we

have: P CU 

SR 
i 

(x, x f , y | V RS, C) 
> = 

< 
P CU 

SR 
i 

(x, x f , y | V RS, NC) . 

ii) For the long-run output-oriented plant capacity utilization, we

have: P CU 

LR 
o (x, x f , y | V RS, C) 

> = 

< 
P CU 

LR 
o (x, x f , y | V RS, NC) . 

v) For the long-run input-oriented plant capacity utilization, we

have: P CU 

LR 
i 

(x, x f , y | V RS, C) 
> = 

< 
P CU 

LR 
i 

(x, x f , y | V RS, NC) . 

v) For the minimum of the short-run total cost function, we have:

C N (y, w 

v , x f | V RS, C) ≤ C N (y, w 

v , x f | V RS, NC) . 

i) For the tangency cost with modified fixed inputs, we have:

C 
tang1 
N 

(y, w, x f∗ | V RS, C ) ≤ C 
tang1 
N 

(y, w, x f∗ | V RS, NC) . 

ii) For the tangency cost with modified outputs, we have:

C 
tang2 
N 

(y (p, w 

f , x f ) , w, x f | V RS, C) 
> = 

< 
C 

tang2 
N 

(y (p, w 

f , x f ) , w, x f | 
V RS, NC) . 

ii) For the minimum of long-run total cost function, we have:

C N (y, w | V RS, C) ≤ C N (y, w | V RS, NC) . 

The proof of this Proposition 3.2 is in Appendix C. 

Both Propositions 3.1 and 3.2 form the basis for our statistical

est comparing different capacity notions among themselves and in

elation to the convexity axiom. We opt for a formal test statistic

roposed by Li (1996) and refined by Fan and Ullah (1999) and Li,

aasoumi, and Racine (2009) lately (henceforth Li-test). The null

ypothesis of this Li-test states that both distributions are equal
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Table 1 

Descriptive statistics for French fruit producers (1984-1986). 

Variable Trimmed mean a Minimum Maximum 

Capital (fixed input) 85,602.58 8891 500,452 

Labor (variable input 229,569 79569 1,682,201 

Materials (variable input) 157,610.9 19566 1,523,776 

Volume of apple production (output) 2.146273 0.0 0 061 37.98153 

Volume of other products (output) 1.37793 0.0 0 0672 25.895 

Price of capital 1.167934 0.167802 7.889478 

Price of labor 1.059968 0.492821 1.771435 

Price of materials 6.72676 1.732421 22.61063 

Note: a 10% trimming level. 

Table 2 

Descriptive statistics for all biased and non-normalized capacity notions. 

Convex BPC LR 
o BPC LR 

i 
BPC SR 

o BPC SR 
i 

SRC C tang 1 C tang 2 LRC 

Average 18.33059 0.430065 5.414862 0.42333 620247.8 718839.9 315274.8 511506.1 

Stand. Dev. 22.62704 0.201673 4.678063 0.194978 827159.9 1124454 1058872 758764.8 

Minimum 1 0.047301 1 0.047301 10454.19 150112.7 132380.2 8507.063 

Maximum 190.4508 1 35.29532 1 6238552 11815722 21170527 6095270 

Nonconvex BPC LR 
o BPC LR 

i 
BPC SR 

o BPC SR 
i 

SRC C tang 1 C tang 2 LRC 

Average 7.639567 0.435916 2.891018 0.430783 816915.6 1160906 301561.7 683063.1 

Stand. Dev. 9.863395 0.206526 2.935252 0.202152 981389.5 1730077 1043655 880893.2 

Minimum 1 0.047301 1 0.047301 14486.9 150112.7 132380.2 13147.43 

Maximum 96.51148 1 32.45654 1 7100639 13448388 21170527 6754195 

BPC LR 
o : Biased long-run output-oriented plant capacity ( DF o ( y | VRS , .)). 

BPC LR 
i 

: Biased long-run input-oriented plant capacity ( DF i ( x , 0 | VRS , .)). 

BPC SR 
o : Biased short-run output-oriented plant capacity ( DF f o (x f , y | V RS, . ) ). 

BPC SR 
i 

: Biased short-run input-oriented plant capacity ( DF SR 
i 

(x f , x v , 0 | V RS, . ) ). 

SRC : Non-normalized short-run total cost ( C(y, w 

v , x f | CRS, . ) ). 

C tang 1 : Non-normalized tangency cost with modified fixed inputs ( C tang1 (y, w, x f∗ | V RS, . ) ). 

C tang 2 : Non-normalized tangency cost with modified outputs ( C tang2 (y (p, w 

f , x f ) , w, x f | V RS, . ) ). 

LRC : Non-normalized long-run total cost( C(y, w | CRS, . ) ). 
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or a given efficiency score or cost frontier estimate and for a given

nderlying specification of technology. The alternative hypothesis

s simply that both distributions are different. This test is valid for

oth dependent and independent variables. Note that dependency

s a characteristic of frontier estimators: frontier efficiency and cost

evels depend on sample size, among others. Now, we are in a po-

ition to start developing the empirical illustration. 

. Empirical illustration 

.1. Data 

To illustrate how the economic and plant capacity notions can

e used, we draw upon a secondary data set that is publicly avail-

ble from the Journal of Applied Econometrics Data Archive. 9 This

uarantees the replicability of all our empirical results. We opt for

n unbalanced panel of three years (1984-1986) of French fruit

roducers based on annual accounting data collected in a survey

see Ivaldi, Ladoux, Ossard, & Simioni, 1996 for details). Two main

riteria determined the selection of farms: (i) the production of ap-

les must be larger than zero, and (ii) the productive acreage of

he orchard must be at least five acres. Three aggregate inputs are

ombined to produce two outputs. The three inputs are: (i) capital

including land), (ii) labor, and (iii) materials. The two aggregate

utputs are (i) the production of apples, and (ii) an aggregate of al-

ernative products. Also input prices are available in French francs.

he first input capital is considered as fixed. 

Summary statistics for the 405 observations in total and details

n the definitions of all variables are available in Appendix 2 in

valdi et al. (1996) . Observe that the limited length of the panel
9 Web site: http://qed.econ.queensu.ca/jae . 

c  

c  

t  
just three years) justifies the use of an intertemporal frontier ac-

umulating all observations in the technology: this approach fun-

amentally ignores technical change. 

Table 1 presents basic descriptive statistics for the inputs, the

utputs, and the input prices. One observes basically a lot of het-

rogeneity and a rather wide range for all inputs and outputs. The

ange for some of the input prices is smaller. More details on the

ata are available in Ivaldi et al. (1996) . 

In the following, we first discuss the biased plant capacity and

on-normalized economic capacity notions. Thereafter, we study

he unbiased plant capacity utilization and normalized economic

apacity utilization (CU) notions. 

.2. Comparing biased and non-normalized capacity notions 

Table 2 shows basic descriptive statistics for all biased and non-

ormalized capacity notions. We report the average, the standard

eviation, and the minima and maxima depending on the context.

he relations between convex and nonconvex results are condi-

ioned by the relations described in Proposition 3.1 . First, ignoring

he capacity notion that cannot be ranked (i.e., C tang 2 ), on average

onvex and nonconvex results are rather markedly different, except

or BP C SR 
i 

and BP C LR 
i 

where the difference is quite small. Second,

he range of the results are sometimes different, but some share

ne of the extremes, except for BP C SR 
i 

, BP C LR 
i 

, and C tang 2 for which

he range is identical. 

Table 3 reports the Li-test results and is structured as fol-

ows. First, components on the diagonal (in bold) depict the Li-

est statistic between the convex and nonconvex cases. Second, the

omponents under the diagonal show the Li-test statistic between

onvex capacities, and the components above the diagonal show

he Li-test statistic between nonconvex capacities. The following

http://qed.econ.queensu.ca/jae
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Table 3 

Li-test between all biased and non-normalized capacity notions. 

Variables BPC LR 
o BPC LR 

i 
BPC SR 

o BPC SR 
i 

SRC C tang 1 C tang 2 LRC 

BPC LR 
o 22.6832 ∗∗∗ 174.6714 ∗∗∗ 26.6822 ∗∗∗ 175.7298 ∗∗∗ 288.4541 ∗∗∗ 289.8256 ∗∗∗ 296.0598 ∗∗∗ 118.6018 ∗∗∗

BPC LR 
i 

248.2363 ∗∗∗ −1.5052 ∗ 113.4045 ∗∗∗ −1.5551 ∗ 173.2542 ∗∗∗ 173.1617 ∗∗∗ 296.0599 ∗∗∗ 173.2206 ∗∗∗

BPC SR 
o 35.9509 ∗∗∗ 172.5672 ∗∗∗ 24.7981 ∗∗∗ 115.1117 ∗∗∗ 288.4545 ∗∗∗ 289.8256 ∗∗∗ 296.0598 ∗∗∗ 288.4553 ∗∗∗

BPC SR 
i 

175.6912 ∗∗∗ −1.5634 ∗ 173.8835 ∗∗∗ −1.4369 ∗ 288.4547 ∗∗∗ 176.1023 ∗∗∗ 296.0599 ∗∗∗ 176.0521 ∗∗∗

SRC 288.6066 ∗∗∗ 173.2392 ∗∗∗ 288.6082 ∗∗∗ 174.2108 ∗∗∗ 3.7014 ∗∗∗ 16.5229 ∗∗∗ 79.0476 ∗∗∗ 0.4898 

C tang 1 290.8352 ∗∗∗ 290.8353 ∗∗∗ 133.9842 ∗∗∗ 174.24 ∗∗∗ 32.1426 ∗∗∗ 10.798 ∗∗∗ 104.1275 ∗∗∗ 27.8555 ∗∗∗

C tang 2 295.933 ∗∗∗ 295.9333 ∗∗∗ 295.9331 ∗∗∗ 174.2678 ∗∗∗ 66.8757 ∗∗∗ 67.0158 ∗∗∗ −2.4851 ∗∗∗ 80.1807 ∗∗∗

LRC 288.5402 ∗∗∗ 288.5424 ∗∗∗ 288.5418 ∗∗∗ 288.5424 ∗∗∗ 3.8733 ∗∗∗ 59.186 ∗∗∗ 76.0951 ∗∗∗ 5.925 ∗∗∗

Li test: critical values at 1% level = 2 . 33(∗ ∗ ∗) ; 5% level = 1 . 64(∗∗) ; 10% level = 1 . 28(∗) . 

Table 4 

Spearman rank correlations between all biased and non-normalized capacity notions. 

Variables BPC LR 
o BPC LR 

i 
BPC SR 

o BPC SR 
i 

SRC C tang 1 C tang 2 LRC 

BPC LR 
o 0.855 a .571 a .652 a .560 a −.737 a −.629 a −.101 b −.753 a 

BPC LR 
i 

.672 a 0.998 a .294 a .991 a −.695 a −.707 a −.388 a −.708 a 

BPC SR 
o .734 a .257 a 0.918 a .304 a −.631 a −.543 a −.106 b −.643 a 

BPC SR 
i 

.662 a .988 a .271 a 0.996 a −.694 a −.707 a −.404 a −.701 a 

SRC −.883 a −.713 a −.498 a −.708 a 0.967 a .939 a .469 a .975 a 

C tang 1 −.851 a −.692 a −.543 a −.697 a .934 a 0.965 a .579 a .947 a 

C tang 2 −.257 a −.353 a −.122 a −.379 a .479 a .641 a 0.981 a .462 a 

LRC −.944 a −.691 a −.646 a −.684 a .960 a .950 a .460 a 0.988 a 

a Correlation is significant at the 0.01 level (2-tailed). 
b Correlation is significant at the 0.05 level (2-tailed). 
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three conclusions emerge from studying Table 3 . First, for the con-

vex capacity notions (below the diagional) all capacity concepts

follow two by two significantly different distributions, though the

Li-test statistics between BP C SR 
i 

and BP C LR 
i 

is only marginally signif-

icant. Second, for the nonconvex capacity notions (above the dia-

gional) almost all capacity concepts follow two by two significantly

different distributions, though again the Li-test statistics between

BP C SR 
i 

and BP C LR 
i 

is only marginally significant. One exception are

SRC and LRC that have indistinguishable distributions. Third, all ca-

pacity notions follow different distributions under convexity com-

pared to nonconvexity (on the diagonal), though the Li-test statis-

tic is only marginally significant for BP C SR 
i 

and BP C LR 
i 

at the 10%

level. 

Table 4 reports the Spearman rank correlation coefficients for

biased and non-normalized capacity notions. This table is struc-

tured in a similar way as Table 3 . In this table, components on the

diagonal (in bold) depict the rank correlation between the convex

and nonconvex cases. The components under the diagonal show

the rank correlation between convex capacities and the compo-

nents above the diagonal show the rank correlation between non-

convex capacities. 

The following three conclusions emerge from studying Table 4 .

First, for the convex results, one can observe that SRC and LRC have

the highest rank correlation among cost-based capacity notions,

and that BP C SR 
i 

rank correlates better with all cost-based capac-

ity notions in absolute values than BP C SR 
o . By contrast, BP C LR 

o rank

correlates in absolute values better with three out of four cost-

based capacity notions than BP C LR 
i 

. BP C SR 
i 

rank correlates better

with BP C LR 
i 

than BP C SR 
o correlates with BP C LR 

o . Finally, the long-run

plant capacity concepts rank correlate better among themselves

than the corresponding short-run concepts. 

Second, for the nonconvex results, exactly the same first two

conclusions emerge. BP C LR 
o and BP C LR 

i 
both rank correlate in abso-

lute values better with two out of four cost-based capacity notions.

The input-oriented plant capacity concepts rank correlates better

among themselves than the output-oriented plant capacity con-

cepts. Finally, the long-run plant capacity concepts rank correlate

better among themselves than the corresponding short-run con-

cepts. Third, comparing convex and nonconvex results, the rank

correlations are remarkably high overall among cost-based capac-
 (
ties notions, and these are highest for BP C SR 
i 

compared to BP C SR 
o 

nd highest for BP C LR 
i 

compared to BP C LR 
o . 

.3. Comparing unbiased and normalized capacity utilization notions 

Turning now to the unbiased and normalized capacity utiliza-

ion notions, we develop a structure of arguments close to the one

n the previous subsection. Table 5 lists descriptive statistics for

ll unbiased and normalized capacity utilization notions similar to

able 2 . We again report the average, the standard deviation, and

he minima and maxima depending on the context. 

We first briefly comment on some of the convex averages to

lucidate the underlying CU concepts. First, the average P CU 

SR 
o of

.710459 means that the efficient outputs are situated at 71% of

aximal efficient outputs. Second, the average P CU 

SR 
i 

of 1.733724

mplies that variable inputs must be scaled up about 73% from

here production is initiated to be able to produce the current

evel of outputs. The long run plant capacity concepts are very sim-

lar in interpretation. Third, the average SRC N of 0.331119 means

hat the minimum of the short-run total cost function is at about

3% of observed costs. The other cost-based CU notions have very

imilar interpretations. 

In this case, the relations between convex and nonconvex re-

ults are determined by the relations described in Proposition 3.2 .

irst, ignoring the five CU notions that cannot be ranked, on aver-

ge convex and nonconvex results are rather markedly different for

he three other CU notions (i.e., SRC N , C 
tang1 
N 

and LRC N ). Second, the

ange of the results differ sometimes. But, some share one of the

xtremes, except for P CU 

SR 
i 

, P CU 

LR 
i 

and C 
tang2 
N 

for which the range

s again identical. 

Table 6 reports the Li-test statistics and it is structured in a sim-

lar way as Table 3 above. A glance at Table 6 yields the following

onclusions. First, for the convex capacity notions (below the diag-

nal) almost all capacity concepts follow two by two significantly

ifferent distributions, except P CU 

LR 
o and LRC N that have indistin-

uishable distributions. Second, for the nonconvex capacity notions

above the diagonal) all capacity concepts follow two by two sig-

ificantly different distributions. Third, all capacity notions follow

ifferent distributions under convexity compared to nonconvexity

on the diagonal). 
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Table 5 

Descriptive statistics for all unbiased and normalized CU-notions. 

Convex PCU LR 
o PCU LR 

i 
PCU SR 

o PCU SR 
i 

SRC N C tang1 
N 

C tang2 
N 

LRC N 

Average 0.297313 1.776266 0.710459 1.733724 0.331119 0.43418 0.391276 0.260619 

Stand. Dev. 0.196011 1.68314 0.221112 1.636011 0.173495 0.189827 2.280111 0.161353 

Minimum 0.005251 1 0.070056 1 0.053327 0.103932 0.017937 0.036357 

Maximum 1 21.14141 1 21.14141 1 1 45.5131 1 

Nonconvex PCU LR 
o PCU LR 

i 
PCU SR 

o PCU SR 
i 

SRC N C tang1 
N 

C tang2 
N 

LRC N 

Average 0.371884 2.584806 0.690958 2.539953 0.464158 0.629439 0.372487 0.378417 

Stand. Dev. 0.252098 2.16346 0.244674 2.156585 0.253099 0.247589 2.270101 0.218591 

Minimum 0.01639 1 0.096771 1 0.069012 0.133735 0.017937 0.039328 

Maximum 1 21.14141 1 21.14141 1 1 45.5131 1 

PCU LR 
o : Unbiased long-run output-oriented plant capacity utilization ( PCU LR 

o (x, y | V RS, . ) ). 

PCU LR 
i 

: Unbiased long-run input-oriented plant capacity utilization ( PCU LR 
i 

(x, y | V RS, . ) ). 

PCU SR 
o : Unbiased short-run output-oriented plant capacity utilization ( PCU SR 

o (x, x f , y | V RS, . ) ). 

PCU SR 
i 

: Unbiased short-run input-oriented plant capacity utilization ( PCU SR 
i 

(x, x f , y | V RS, . ) ). 

SRC N : Normalized short-run total cost ( C(y, w 

v , x f | CRS, . ) /wx ). 

C tang1 
N 

: Normalized tangency cost with modified fixed inputs ( C tang1 (y, w, x f∗ | V RS, . ) /wx ). 

C tang2 
N 

: Normalized tangency cost with modified outputs ( C tang2 (y (p, w 

f , x f ) , w, x f | V RS, . ) /wx ). 

LRC N : Normalized long-run total cost ( C(y, w | CRS, . ) /wx ). 

Table 6 

Li-test between all unbiased and normalized CU-notions. 

Variables PCU LR 
o PCU LR 

i 
PCU SR 

o PCU SR 
i 

SRC N C tang1 
N 

C tang2 
N 

LRC N 

PCU LR 
o 5.1188 ∗∗∗ 118.4083 ∗∗∗ 54.4991 ∗∗∗ 116.8833 ∗∗∗ 11.2028 ∗∗∗ 33.7377 ∗∗∗ 8.2625 ∗∗∗ 3.4488 ∗∗∗

PCU LR 
i 142.2835 ∗∗∗ 27.068 ∗∗∗ 94.1687 ∗∗∗ −2.8477 ∗∗∗ 106.417 ∗∗∗ 92.5103 ∗∗∗ 144.72 ∗∗∗ 118.3195 ∗∗∗

PCU SR 
i 57.2157 ∗∗∗ 68.3072 ∗∗∗ 10.2515 ∗∗∗ 96.2052 ∗∗∗ 25.1713 ∗∗∗ 4.0829 ∗∗∗ 83.4402 ∗∗∗ 49.933 ∗∗∗

PCU SR 
o 155.5302 ∗∗∗ −2.9622 ∗∗∗ 173.8835 ∗∗∗ 31.0053 ∗∗∗ 105.8964 ∗∗∗ 93.404 ∗∗∗ 143.2459 ∗∗∗ 116.4413 ∗∗∗

SRC N 5.9226 ∗∗∗ 124.2871 ∗∗∗ 288.6082 ∗∗∗ 174.2108 ∗∗∗ 6.6207 ∗∗∗ 9.9527 ∗∗∗ 20.4263 ∗∗∗ 3.7252 ∗∗∗

C tang1 
N 

34.943 ∗∗∗ 106.7562 ∗∗∗ 133.9842 ∗∗∗ 174.24 ∗∗∗ 32.1426 ∗∗∗ 25.0337 ∗∗∗ 58.8827 ∗∗∗ 27.8878 ∗∗∗

C tang2 
N 

3.3979 ∗∗∗ 142.0431 ∗∗∗ 295.9331 ∗∗∗ 174.2678 ∗∗∗ 66.8757 ∗∗∗ 67.0158 ∗∗∗ −2.8515 ∗∗∗ 14.5216 ∗∗∗

LRC N 0.7119 156.8096 ∗∗∗ 288.5418 ∗∗∗ 288.5424 ∗∗∗ 3.8733 ∗∗∗ 59.186 ∗∗∗ 76.0951 ∗∗∗ 12.6322 ∗∗∗

Li test: critical values at 1% level = 2 . 33(∗ ∗ ∗) ; 5% level = 1 . 64(∗∗) ; 10% level = 1 . 28(∗) . 

Table 7 

Spearman rank correlations between all unbiased and normalized CU-notions. 

Variables PCU LR 
o PCU LR 

i 
PCU SR 

o PCU SR 
i 

SRC N C tang1 
N 

C tang2 
N 

LRC N 

PCU LR 
o 0.797 a .502 a .517 a .455 a .164 a −0.073 −.605 a .162 a 

PCU LR 
i 

.571 a 0.899 a .426 a .972 a .391 a .260 a −.689 a .484 a 

PCU SR 
o .425 a .197 a 0.706 a .418 a .253 a 0.042 −.403 a .224 a 

PCU SR 
i 

.565 a .985 a .181 a 0.888 a .443 a .307 a −.661 a .521 a 

SRC N 0.054 .617 a −.241 a .650 a 0.893 a .734 a 0.041 .935 a 

C tang1 
N 

−.527 a .138 a −.295 a .156 a .569 a 0.807 a .273 a .769 a 

C tang2 
N 

−.876 a −.552 a −.326 a −.534 a −0.026 .630 a 0.997 a 0.016 

LRC N 0.073 .737 a −0.085 .749 a .894 a .585 a −0.074 0.957 a 

a Correlation is significant at the 0.01 level (2-tailed). 
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Table 7 reports the Spearman rank correlation coefficients for

nbiased and normalized capacity utilization notions. As in Table 4 ,

he components on the diagonal show the rank correlation be-

ween convex and nonconvex cases. The components under the di-

gonal show the rank correlation between convex CU notions, and

he components above the diagonal show the rank correlation be-

ween nonconvex CU notions. 

A close look at Table 7 leads to the following three conclusions.

irst, for the convex results, one can notice that P CU 

SR 
i 

rank corre-

ates better with all cost-based CU notions in absolute values than

 CU 

SR 
o , except for the C 

tang1 
N 

CU notion. P CU 

LR 
o and P CU 

LR 
i 

both rank

orrelate in absolute values better with two out of four cost-based

U notions. The input-oriented plant capacity concepts rank corre-

ates better among themselves than the output-oriented plant ca-

acity concepts. Finally, the long-run plant capacity concepts rank

orrelate better among themselves than the corresponding short-

un concepts. Furthermore, SRC N and LRC N again obtain the highest

ank correlation among cost-based CU notions. Finally, P CU 

SR 
o and

 CU 

LR 
o essentially have a zero correlation with LRC N . 

Second, for the nonconvex results, P CU 

SR 
i 

and P CU 

LR 
i 

both rank

orrelate better with all cost-based CU notions in absolute values
han their output-oriented counterparts. The input-oriented plant

apacity concepts rank correlates better among themselves than

he output-oriented plant capacity concepts. Finally, the long-run

lant capacity concepts rank correlate better among themselves

han the corresponding short-run concepts. In addition, P CU 

SR 
o and

 CU 

LR 
o have now a close to zero correlation with C 

tang1 
N 

. Third, com-

aring convex and nonconvex results, the rank correlations are re-

arkably high overall among cost-based CU notions, and these are

ighest for P CU 

SR 
i 

compared to P CU 

SR 
o and highest for P CU 

LR 
i 

com-

ared to P CU 

LR 
o . 

. Conclusions 

This contribution has set itself two major goals. A first ma-

or goal has been to make a theoretically coherent input-oriented

omparison between the introduced technical and economic ca-

acity notions. As a point of comparison, also the output-oriented

lant capacity notion has been included. A second major goal has

een to make this coherent input-oriented comparison among ca-

acity notions using both convex and nonconvex technologies to
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assess the impact of the convexity axiom. Theoretically, the investi-

gation of this convexity hypothesis has led us to establish the cases

where plant and economic capacity concepts can be ordered a pri-

ori (see Propositions 3.1 and 3.2 ). 

The empirical results have shown the following key results.

First, there appears quite some heterogeneity among the differ-

ent technical and economic capacity notions in terms of descrip-

tive statistics. Second, formal testing has revealed that in almost all

cases technical and economic capacity notions follow different dis-

tributions. Thus, each of these concepts seems to capture a differ-

ent part of economic reality. Furthermore, each and every capacity

concept seems also to follow almost always a different distribution

under convexity and nonconvexity. Thus, convexity matters from a

distributional viewpoint. Third, the study of Spearman rank corre-

lation coefficients reveals that almost uniformly the input-oriented

plant capacity notion correlates better with the cost-based capac-

ity notions than the output-oriented plant capacity notion under

nonconvexity (less pronounced so under convexity). Furthermore,

the rank correlations are overall high for convex and nonconvex

results. Thus, convexity seems to matter less from a ranking point

of view. 

Therefore, two key conclusions emerge from this contribution.

First, the recently introduced input-oriented plant capacity notions

lend themselves overall more naturally to comparisons with cost-

based capacity notions than the more traditional output-oriented

plant capacity notions. Thus, while the short-run output-oriented

plant capacity notion enjoys some popularity in empirical applica-

tions (see the literature review in Cesaroni et al., 2017 ), applied re-

searchers should probably consider using the new input-oriented

plant capacity notions that are more in line with the traditional

cost-based capacity notions widespread in economics in terms of

both the resulting distributions and rankings. 

Second, convexity matters also for both technical and economic

capacity notions. Therefore, it seems essential to further empir-

ically explore potential differences between estimates based on

convex and nonconvex technologies and cost functions in even

greater detail (e.g., the impact on economies of scope, the effect on

mergers and acquisitions, etc.). Thus, even though theoretically the

impact of convexity has been known for some time, it is important

to further explore the impact of convexity on key economic value

relations in practice. The current evidence provided shows that this

impact is nonnegligible when measuring capacity and that convex-

ification may not be harmless. 

As an agenda for future research, we can mention three issues.

First, it would be good if our empirical results regarding both the

comparison of input-oriented technical and economic capacity no-

tions as well as the impact of the convexity axiom in this context

would be corroborated in additional empirical work by other re-

searchers. Second, while the input-oriented plant capacity notion

compares well with cost-based capacity notions, one may won-

der whether the traditional output-oriented plant capacity would

fit much better with capacity notions based on the revenue func-

tion (see, e.g., Lindebo et al., 2007 or Segerson & Squires, 1995 ).

This conjecture remains to be explored. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.ejor.2019.01.014 . 
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